Lifting analysis of a curved plate girder

www.mbrace3d.com

Purpose

Evaluate the rotations, stresses and stability during lifting, including:

I. The rigid body rotation due to the girder's curvature

Source: J. Stith, Predicting the Behavior of Horizontally Curved I-Girders During Construction, PhD Dissertation, The University of Texas at Austin, 2010

Purpose

2. The rotation due to the girder's torsion under its own self-weight

Sources:

- J. Farris, Behavior of Horizontally Curved Steel I-Girders During Construction, Master's Thesis, The University of Texas at Austin, 2008
- P. Biju-Duval, Development of Three-Dimensional Finite Element Software for Curved Plate Girder and Tub Girder Bridges During Construction, PhD Dissertation, The University of Texas at Austin, 2017

Targets

For a safe lifting and erection process, the targets are as follows:

- Limit the end rotations to <u>1.5 degrees</u> (to have easy splice connections)
- Limit maximum stresses to $\frac{F_v/2}{2}$ (to prevent any form of yielding, in absence of detailed information on the residual stresses)
- Have the Ist buckling eigenvalue be <u>well above I</u> (to prevent any stability issues)
- \rightarrow In practice, the first criterion (end rotations $< 1.5^{\circ}$) is the one that usually governs.

Source: J. Stith, T. Helwig et. al, , Behavior of Horizontally Curved I-Girders During Lifting, ASCE Journal of Structural Engineering, Vol. 139, No. 4, April, 2013

Implementation in mBrace3D

- Rigid axial members modelling the clamps at the lift points (highlighted in green)
- Dummy springs at the bottom flange to prevent stability issues
- <u>Note</u>: This model was generated parametrically (no "drawing" involved)

Example

Middle girder (radius of curvature = 1,200-ft.):

Lift points at 31.2-ft. and 108.2-ft. along the girder

Source: J. Stith, T. Helwig et. al, , Behavior of Horizontally Curved I-Girders During Lifting, ASCE Journal of Structural Engineering, Vol. 139, No. 4, April, 2013

Results (I/4)

Geometry

Deflected shape $(U_{max} = 0.3-in.)$

Magnification factor 8

Results (2/4)

Results (3/4)

Results (4/4)

Layovers (cross-sectional rotations)

Torque diagram

Lateral bending diagram

Notes:

- All these plots are generated automatically in mBrace3D
- For the torque and lateral bending diagrams, this involves the integration of the cross-sectional stresses
- Other plots are also immediately available, such as the moment and shear diagrams

Concluding remarks

- Lifting analyses are easily implemented in mBrace3D and yield meaningful results: end rotations, stresses, stability
- This feature shall gives erectors further confidence in their lifting plans
- Additional levels of complexity may be added to the example presented earlier, such as wind loads, point loads (to model any cross-frame present during the lifting operation), etc.

Final note:

Another valuable tool for lifting analyses is UT Lift, which was developed by J. Stith in 2010 and is available for free at the link below:

https://fsel.engr.utexas.edu/facilities/software/ut-lift

UT Lift is an Excel spreadsheet which gives the optimal lift points to minimize rotations during lifting, among other interesting features.